Solenoid channel

Proton beam undergoing 90 deg X-Y rotation in an ideal solenoid channel.

The matched Twiss parameters at entry are:

  • \(\beta_\mathrm{x} = 2.4321374875\) m

  • \(\alpha_\mathrm{x} = 0.0\)

  • \(\beta_\mathrm{y} = 2.4321374875\) m

  • \(\alpha_\mathrm{y} = 0.0\)

We use a 250 MeV proton beam with initial unnormalized rms emittance of 1 micron in the horizontal plane, and 2 micron in the vertical plane.

The solenoid magnetic field corresponds to B = 2 T.

The second moments of the particle distribution after the solenoid channel are rotated by 90 degrees: the final horizontal moments should coincide with the initial vertical moments, and vice-versa, to within the level expected due to noise due to statistical sampling.

In this test, the initial and final values of \(\sigma_x\), \(\sigma_y\), \(\sigma_t\), \(\epsilon_x\), \(\epsilon_y\), and \(\epsilon_t\) must agree with nominal values.

Run

This example can be run as a Python script (python3 run_solenoid.py) or with an app with an input file (impactx input_solenoid.in). Each can also be prefixed with an MPI executor, such as mpiexec -n 4 ... or srun -n 4 ..., depending on the system.

Listing 39 You can copy this file from examples/solenoid/run_solenoid.py.
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Marco Garten, Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#
# -*- coding: utf-8 -*-

import amrex
from impactx import ImpactX, RefPart, distribution, elements

sim = ImpactX()

# set numerical parameters and IO control
sim.particle_shape = 2  # B-spline order
sim.space_charge = False
# sim.diagnostics = False  # benchmarking
sim.slice_step_diagnostics = True

# domain decomposition & space charge mesh
sim.init_grids()

# load a 250 MeV proton beam with an initial
# horizontal rms emittance of 1 um and an
# initial vertical rms emittance of 2 um
energy_MeV = 250.0  # reference energy
bunch_charge_C = 1.0e-9  # used with space charge
npart = 10000  # number of macro particles

#   reference particle
ref = sim.particle_container().ref_particle()
ref.set_charge_qe(1.0).set_mass_MeV(938.27208816).set_energy_MeV(energy_MeV)

#   particle bunch
distr = distribution.Waterbag(
    sigmaX=1.559531175539e-3,
    sigmaY=2.205510139392e-3,
    sigmaT=1.0e-3,
    sigmaPx=6.41218345413e-4,
    sigmaPy=9.06819680526e-4,
    sigmaPt=1.0e-3,
)
sim.add_particles(bunch_charge_C, distr, npart)

# design the accelerator lattice
sim.lattice.append(elements.Sol(ds=3.820395, ks=0.8223219329893234))

# run simulation
sim.evolve()

# clean shutdown
del sim
amrex.finalize()
Listing 40 You can copy this file from examples/solenoid/input_solenoid.in.
###############################################################################
# Particle Beam(s)
###############################################################################
beam.npart = 10000
beam.units = static
beam.energy = 250.0
beam.charge = 1.0e-9
beam.particle = proton
beam.distribution = waterbag
beam.sigmaX = 1.559531175539e-3
beam.sigmaY = 2.205510139392e-3
beam.sigmaT = 1.0e-3
beam.sigmaPx = 6.41218345413e-4
beam.sigmaPy = 9.06819680526e-4
beam.sigmaPt = 1.0e-3
beam.muxpx = 0.0
beam.muypy = 0.0
beam.mutpt = 0.0


###############################################################################
# Beamline: lattice elements and segments
###############################################################################
lattice.elements = sol1
lattice.nslice = 1

sol1.type = solenoid
sol1.ds = 3.820395
sol1.ks = 0.8223219329893234


###############################################################################
# Algorithms
###############################################################################
algo.particle_shape = 2
algo.space_charge = false


###############################################################################
# Diagnostics
###############################################################################
diag.slice_step_diagnostics = true

Analyze

We run the following script to analyze correctness:

Script analysis_solenoid.py
Listing 41 You can copy this file from examples/solenoid/analysis_solenoid.py.
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#

import glob

import numpy as np
import pandas as pd
from scipy.stats import moment


def get_moments(beam):
    """Calculate standard deviations of beam position & momenta
    and emittance values

    Returns
    -------
    sigx, sigy, sigt, emittance_x, emittance_y, emittance_t
    """
    sigx = moment(beam["x"], moment=2) ** 0.5  # variance -> std dev.
    sigpx = moment(beam["px"], moment=2) ** 0.5
    sigy = moment(beam["y"], moment=2) ** 0.5
    sigpy = moment(beam["py"], moment=2) ** 0.5
    sigt = moment(beam["t"], moment=2) ** 0.5
    sigpt = moment(beam["pt"], moment=2) ** 0.5

    epstrms = beam.cov(ddof=0)
    emittance_x = (sigx**2 * sigpx**2 - epstrms["x"]["px"] ** 2) ** 0.5
    emittance_y = (sigy**2 * sigpy**2 - epstrms["y"]["py"] ** 2) ** 0.5
    emittance_t = (sigt**2 * sigpt**2 - epstrms["t"]["pt"] ** 2) ** 0.5

    return (sigx, sigy, sigt, emittance_x, emittance_y, emittance_t)


def read_all_files(file_pattern):
    """Read in all CSV files from each MPI rank (and potentially OpenMP
    thread). Concatenate into one Pandas dataframe.

    Returns
    -------
    pandas.DataFrame
    """
    return pd.concat(
        (
            pd.read_csv(filename, delimiter=r"\s+")
            for filename in glob.glob(file_pattern)
        ),
        axis=0,
        ignore_index=True,
    ).set_index("id")


# initial/final beam on rank zero
initial = read_all_files("diags/beam_000000.*")
final = read_all_files("diags/beam_final.*")

# compare number of particles
num_particles = 10000
assert num_particles == len(initial)
assert num_particles == len(final)

print("Initial Beam:")
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t = get_moments(initial)
print(f"  sigx={sigx:e} sigy={sigy:e} sigt={sigt:e}")
print(
    f"  emittance_x={emittance_x:e} emittance_y={emittance_y:e} emittance_t={emittance_t:e}"
)

atol = 0.0  # ignored
rtol = num_particles**-0.5  # from random sampling of a smooth distribution
print(f"  rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
    [sigx, sigy, sigt, emittance_x, emittance_y, emittance_t],
    [
        1.559531175539e-3,
        2.205510139392e-3,
        1.0e-3,
        1.0e-6,
        2.0e-6,
        1.0e-6,
    ],
    rtol=rtol,
    atol=atol,
)


print("")
print("Final Beam:")
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t = get_moments(final)
print(f"  sigx={sigx:e} sigy={sigy:e} sigt={sigt:e}")
print(
    f"  emittance_x={emittance_x:e} emittance_y={emittance_y:e} emittance_t={emittance_t:e}"
)

atol = 0.0  # ignored
rtol = num_particles**-0.5  # from random sampling of a smooth distribution
print(f"  rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
    [sigx, sigy, sigt, emittance_x, emittance_y, emittance_t],
    [
        2.205510139392e-3,
        1.559531175539e-3,
        6.404930308742e-3,
        2.0e-6,
        1.0e-6,
        1.0e-6,
    ],
    rtol=rtol,
    atol=atol,
)