Test of a Transverse Kicker

This test applies two transverse momentum kicks, first in the horizontal direction (2 mrad) and then in the vertical direction (3 mrad).

We use a 2 GeV electron beam.

The second beam moments should be unchanged, but the first beam moments corresponding to \(p_x\) and \(p_y\) should change according to the size of the kick.

In this test, the initial and final values of \(\lambda_x\), \(\lambda_y\), \(\lambda_t\), \(\epsilon_x\), \(\epsilon_y\), and \(\epsilon_t\) must agree with nominal values.

Run

This example can be run either as:

  • Python script: python3 run_kicker.py or

  • ImpactX executable using an input file: impactx input_kicker.in

For MPI-parallel runs, prefix these lines with mpiexec -n 4 ... or srun -n 4 ..., depending on the system.

Listing 45 You can copy this file from examples/kicker/run_kicker.py.
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Ryan Sandberg, Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#
# -*- coding: utf-8 -*-

from impactx import ImpactX, distribution, elements

sim = ImpactX()

# set numerical parameters and IO control
sim.particle_shape = 2  # B-spline order
sim.space_charge = False
# sim.diagnostics = False  # benchmarking
sim.slice_step_diagnostics = True

# domain decomposition & space charge mesh
sim.init_grids()

# load a 2 GeV electron beam with an initial
# unnormalized rms emittance of  nm
kin_energy_MeV = 2.0e3  # reference energy
bunch_charge_C = 1.0e-9  # used without space charge
npart = 10000  # number of macro particles

#   reference particle
ref = sim.particle_container().ref_particle()
ref.set_charge_qe(-1.0).set_mass_MeV(0.510998950).set_kin_energy_MeV(kin_energy_MeV)

#   particle bunch
distr = distribution.Waterbag(
    lambdaX=4.0e-3,
    lambdaY=4.0e-3,
    lambdaT=1.0e-3,
    lambdaPx=3.0e-4,
    lambdaPy=3.0e-4,
    lambdaPt=2.0e-3,
)
sim.add_particles(bunch_charge_C, distr, npart)

# add beam diagnostics
monitor = elements.BeamMonitor("monitor", backend="h5")

# design the accelerator lattice
kicklattice = [
    monitor,
    elements.Kicker(xkick=2.0e-3, ykick=0.0, units="dimensionless"),
    elements.Kicker(xkick=0.0, ykick=3.0e-3, units="dimensionless"),
    monitor,
]
# assign a lattice
sim.lattice.extend(kicklattice)

# run simulation
sim.evolve()

# clean shutdown
sim.finalize()
Listing 46 You can copy this file from examples/kicker/input_kicker.in.
###############################################################################
# Particle Beam(s)
###############################################################################
beam.npart = 10000
beam.units = static
beam.kin_energy = 2.0e3
beam.charge = 1.0e-9
beam.particle = electron
beam.distribution = waterbag
beam.lambdaX = 4.0e-3
beam.lambdaY = 4.0e-3
beam.lambdaT = 1.0e-3
beam.lambdaPx = 3.0e-4
beam.lambdaPy = 3.0e-4
beam.lambdaPt = 2.0e-3
beam.muxpx = 0.0
beam.muypy = 0.0
beam.mutpt = 0.0


###############################################################################
# Beamline: lattice elements and segments
###############################################################################
lattice.elements = monitor hkick vkick monitor

monitor.type = beam_monitor
monitor.backend = h5

hkick.type = kicker
hkick.xkick = 2.0e-3      # 2 mrad horizontal kick
hkick.ykick = 0.0

vkick.type = kicker
vkick.xkick = 0.0
vkick.ykick = 3.0e-3     # 3 mrad vertical kick

###############################################################################
# Algorithms
###############################################################################
algo.particle_shape = 2
algo.space_charge = false

Analyze

We run the following script to analyze correctness:

Script analysis_kicker.py
Listing 47 You can copy this file from examples/kicker/analysis_kicker.py.
#!/usr/bin/env python3
#
# Copyright 2022-2023 ImpactX contributors
# Authors: Axel Huebl, Chad Mitchell
# License: BSD-3-Clause-LBNL
#

import numpy as np
import openpmd_api as io
from scipy.stats import describe, moment


def get_moments(beam):
    """Calculate standard deviations of beam position & momenta
    and emittance values

    Returns
    -------
    sigx, sigy, sigt, emittance_x, emittance_y, emittance_t, meanpx, meanpy
    """
    sigx = moment(beam["position_x"], moment=2) ** 0.5  # variance -> std dev.
    sigpx = moment(beam["momentum_x"], moment=2) ** 0.5
    sigy = moment(beam["position_y"], moment=2) ** 0.5
    sigpy = moment(beam["momentum_y"], moment=2) ** 0.5
    sigt = moment(beam["position_t"], moment=2) ** 0.5
    sigpt = moment(beam["momentum_t"], moment=2) ** 0.5

    meanpx = describe(beam["momentum_x"]).mean
    meanpy = describe(beam["momentum_y"]).mean

    epstrms = beam.cov(ddof=0)
    emittance_x = (sigx**2 * sigpx**2 - epstrms["position_x"]["momentum_x"] ** 2) ** 0.5
    emittance_y = (sigy**2 * sigpy**2 - epstrms["position_y"]["momentum_y"] ** 2) ** 0.5
    emittance_t = (sigt**2 * sigpt**2 - epstrms["position_t"]["momentum_t"] ** 2) ** 0.5

    return (sigx, sigy, sigt, emittance_x, emittance_y, emittance_t, meanpx, meanpy)


# initial/final beam
series = io.Series("diags/openPMD/monitor.h5", io.Access.read_only)
last_step = list(series.iterations)[-1]
initial = series.iterations[1].particles["beam"].to_df()
final = series.iterations[last_step].particles["beam"].to_df()

# compare number of particles
num_particles = 10000
assert num_particles == len(initial)
assert num_particles == len(final)

print("Initial Beam:")
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t, meanpx, meanpy = get_moments(
    initial
)
print(
    f"  sigx={sigx:e} sigy={sigy:e} sigt={sigt:e} meanpx={meanpx:e} meanpy={meanpy:e}"
)
print(
    f"  emittance_x={emittance_x:e} emittance_y={emittance_y:e} emittance_t={emittance_t:e}"
)

atol = 0.0  # ignored
rtol = 5.0 * num_particles**-0.5  # from random sampling of a smooth distribution
print(f"  rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
    [sigx, sigy, sigt, emittance_x, emittance_y, emittance_t],
    [
        4.017554e-03,
        4.017044e-03,
        9.977588e-04,
        1.197572e-06,
        1.210501e-06,
        2.001382e-06,
    ],
    rtol=rtol,
    atol=atol,
)

atol = rtol * emittance_x / sigx  # relative to rms beam size
assert np.allclose(
    [meanpx, meanpy],
    [
        0.0,
        0.0,
    ],
    atol=atol,
)


print("")
print("Final Beam:")
sigx, sigy, sigt, emittance_x, emittance_y, emittance_t, meanpx, meanpy = get_moments(
    final
)
print(
    f"  sigx={sigx:e} sigy={sigy:e} sigt={sigt:e} meanpx={meanpx:e} meanpy={meanpy:e}"
)
print(
    f"  emittance_x={emittance_x:e} emittance_y={emittance_y:e} emittance_t={emittance_t:e}"
)

atol = 0.0  # ignored
rtol = 5.0 * num_particles**-0.5  # from random sampling of a smooth distribution
print(f"  rtol={rtol} (ignored: atol~={atol})")

assert np.allclose(
    [sigx, sigy, sigt, emittance_x, emittance_y, emittance_t],
    [
        4.017554e-03,
        4.017044e-03,
        9.977588e-04,
        1.197572e-06,
        1.210501e-06,
        2.001382e-06,
    ],
    rtol=rtol,
    atol=atol,
)


atol = rtol * emittance_x / sigx  # relative to rms beam size
print(f"  atol~={atol}")

assert np.allclose(
    [meanpx, meanpy],
    [
        2.0e-3,
        3.0e-3,
    ],
    atol=atol,
)